1,023 research outputs found

    The prevalence of autism spectrum disorders in China: A comprehensive meta-analysis

    Get PDF
    There are conflicting prevalence estimates of autism spectrum disorders (ASDs) in mainland China (China thereafter). This study is a comprehensive meta-analysis of the pooled prevalence of ASDs in the general population in China. Study investigators independently conducted a systematic literature search of the following databases: PubMed, EMBASE, PsycINFO, China National Knowledge Infrastructure, Chinese biomedical literature service system, and Wan Fang. Studies reporting prevalence of ASDs and autism in Chinese population were identified and analysed using the Comprehensive Meta-Analysis program with the random effects model. Forty-four studies were included in the meta-analysis comprising 2,337,321 subjects of whom 46.66 % were females. The mean age of subjects ranged from 1.6 to 8 years. Based on diagnostic criteria the pooled prevalence of ASDs was 39.23 per 10,000 (95% CI: 28.44-50.03 per 10,000, I2=89.2%); specifically, the prevalence of autism was 10.18 per 10,000 (95% CI: 8.46-11.89 per 10,000, I2=92.5%). Subgroup analyses revealed significant difference in the prevalence of ASDs between genders (72.77 per 10,000 in males vs. 16.45 per 10,000 in females). In conclusion, the prevalence of ASDs and autism in China was found generally lower than those reported in other countries. Further studies are needed to clarify the variation in prevalence

    (E)-3-Bromo-N′-(5-bromo-2-hydroxy­benzyl­idene)benzohydrazide

    Get PDF
    The title compound, C14H10Br2N2O2, was synthesized by the reaction of 5-bromo­salicylaldehyde with an equimolar quantity of 3-bromo­benzohydrazide in methanol. The dihedral angle between the two benzene rings is 10.5 (4)°. In the crystal structure, mol­ecules are linked through inter­molecular N—H⋯O hydrogen bonds to form chains parallel to the c axis, and an intra­molecular O—H⋯N inter­action also occurs

    Hepatopancreas-Specific Lectin Participates in the Antibacterial Immune Response by Regulating the Expression of Antibacterial Proteins

    Get PDF
    The hepatopancreas is an important digestive and immune organ in crustacean. There were low but stable numbers of microbes living in the hemolymph of crustacean, whereas the organs (including hepatopancreas) of crustacean were immersed in the hemolymph. It is very important to study the immune mechanism of the hepatopancreas against bacteria. In this study, a novel CTL (HepCL) with two CRDs, which was mainly expressed in the hepatopancreas, was identified in red swamp crayfish (Procambarus clarkii). HepCL binds to bacteria in vitro and could enhance bacterial clearance in vivo. Compared with the C-terminal CRD of HepCL (HepCL-C), the N-terminal CRD (HepCL-N) showed weaker bacterial binding ability in vitro and stronger bacterial clearance activity in vivo. The expression of some antimicrobial proteins, such as FLP, ALF1 and ALF5, was downregulated under knockdown of HepCL or blocked with Anti-HepCL after challenge with Vibrio in crayfish. These results demonstrated that HepCL might be involved in the antibacterial immune response by regulating the expression of antimicrobial proteins

    Symmetry-breaking-induced nonlinear optics at a microcavity surface

    Get PDF
    Second-order nonlinear optical processes lie at the heart of many applications in both classical and quantum regimes1,2,3. Inversion symmetry, however, rules out the second-order nonlinear electric-dipole response in materials widely adopted in integrated photonics (for example, SiO_2, Si and Si_3N_4). Here, we report nonlinear optics induced by symmetry breaking at the surface of an ultrahigh-Q silica microcavity under a sub-milliwatt continuous-wave pump. By dynamically coordinating the double-resonance phase matching, a second harmonic is achieved with an unprecedented conversion efficiency of 0.049% W^(−1), 14 orders of magnitude higher than that of the non-enhancement case. In addition, the nonlinear effect from the intrinsic symmetry breaking at the surface can be identified unambiguously, with guided control of the pump polarization and the recognition of the second-harmonic mode distribution. This work not only extends the emission frequency range of silica photonic devices, but also lays the groundwork for applications in ultra-sensitive surface analysis

    Application of Local Wave Decomposition in Seismic Signal Processing

    Get PDF
    Local wave decomposition (LWD) method plays an important role in seismic signal processing for its superiority in significantly revealing the frequency content of a seismic signal changes with time variation. The LWD method is an effective way to decompose a seismic signal into several individual components. Each component represents a harmonic signal localized in time, with slowly varying amplitudes and frequencies, potentially highlighting different geologic and stratigraphic information. Empirical mode decomposition (EMD), the synchrosqueezing transform (SST), and variational mode decomposition (VMD) are three typical LWD methods. We mainly study the application of the LWD method especially EMD, SST, and VMD in seismic signal processing including seismic signal de‐noising, edge detection of seismic images, and recovery of the target reflection near coal seams

    OphGLM: Training an Ophthalmology Large Language-and-Vision Assistant based on Instructions and Dialogue

    Full text link
    Large multimodal language models (LMMs) have achieved significant success in general domains. However, due to the significant differences between medical images and text and general web content, the performance of LMMs in medical scenarios is limited. In ophthalmology, clinical diagnosis relies on multiple modalities of medical images, but unfortunately, multimodal ophthalmic large language models have not been explored to date. In this paper, we study and construct an ophthalmic large multimodal model. Firstly, we use fundus images as an entry point to build a disease assessment and diagnosis pipeline to achieve common ophthalmic disease diagnosis and lesion segmentation. Then, we establish a new ophthalmic multimodal instruction-following and dialogue fine-tuning dataset based on disease-related knowledge data and publicly available real-world medical dialogue. We introduce visual ability into the large language model to complete the ophthalmic large language and vision assistant (OphGLM). Our experimental results demonstrate that the OphGLM model performs exceptionally well, and it has the potential to revolutionize clinical applications in ophthalmology. The dataset, code, and models will be made publicly available at https://github.com/ML-AILab/OphGLM.Comment: OphGLM:The first ophthalmology large language-and-vision assistant based on instructions and dialogu

    Efficient W state entanglement concentration using quantum-dot and optical microcavities

    Full text link
    We present an entanglement concentration protocols (ECPs) for less-entangled W state with quantum-dot and microcavity coupled system. The present protocol uses the quantum nondemolition measurement on the spin parity to construct the parity check gate. Different from other ECPs, this less-entangled W state with quantum-dot and microcavity coupled system can be concentrated with the help of some single photons. The whole protocol can be repeated to get a higher success probability. It may be useful in current quantum information processing.Comment: 9 pages, 6 figure

    Quantitative Proteomic Study of Human Lung Squamous Carcinoma and Normal Bronchial Epithelial Acquired by Laser Capture Microdissection

    Get PDF
    Objective. To investigate the differential protein profile of human lung squamous carcinoma (HLSC) and normal bronchial epithelium (NBE) and provide preliminary results for further study to explore the carcinogenic mechanism of HLSC. Methods. Laser capture microdissection (LCM) was used to purify the target cells from 10 pairs of HLSC tissues and their matched NHBE, respectively. A stable-isotope labeled strategy using iTRAQ, followed by 2D-LC/Q-STAR mass spectrometry, was performed to separate and identify the differential expression proteins. Results. A total of 96 differential expression proteins in the LCM-purified HLSC and NBE were identified. Compared with NBE, 49 proteins were upregulated and 47 proteins were downregulated in HLSC. Furthermore, the expression levels of the differential proteins including HSPB1, CKB, SCCA1, S100A8, as well as S100A9 were confirmed by western blot and tissue microarray and were consistent with the results of quantitative proteomics. Conclusion. The different expression proteins in HLSC will provide scientific foundation for further study to explore the carcinogenic mechanism of HLSC

    catena-[[(nitrato-κO)silver(I)]-μ-1,10-phenanthroline-5,6-dione-κ4 O,O′:N,N′]

    Get PDF
    In the title one-dimensional coordination polymer, [Ag(NO3)(C12H6N2O2)]n, the AgI atom is penta­coordinated by two N atoms from a 1,10-phenanthroline-5,6-dione (phen-dione) ligand, one O atom from the nitrate anion and two O atoms from another phen-dione ligand. The coordination environment around silver is slightly distorted square-pyramidal. Inter­estingly, the Ag—O distances to the phen-dione ligand are different [Ag—O = 2.612 (6) and 2.470 (5) Å]. The one-dimensional chains run parallel to [101] and are further inter­connected by weak hydrogen bonds (C—H⋯O) and π–π stacking inter­actions [centroid–centroid distances 3.950 (4) and 3.792 (4) Å], forming a three-dimensional supra­molecular network
    corecore